

Improving diagnostic tools for suspected Cat-scratch disease cases

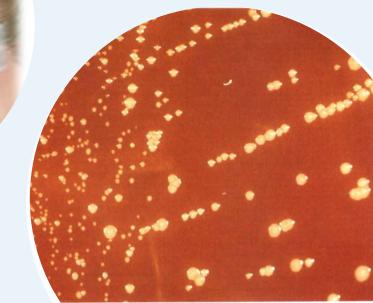
• Results from being scratched by a cat carrying *Bartonella henselae* infected fleas

Symptoms include:

- Bumps/blisters at site of injury
- Swollen lymph nodes (lymphadenopathy)

CSD Diagnosis

PCR via lymph node aspirate or blood sample:


- Large needle not ideal in children
- Poor blood test sensitivity

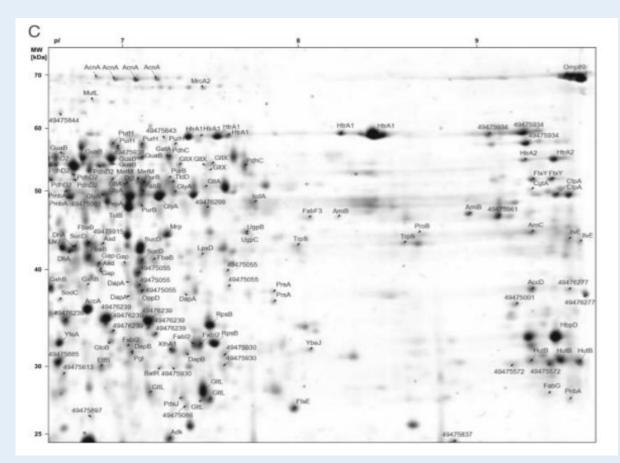
Culture:

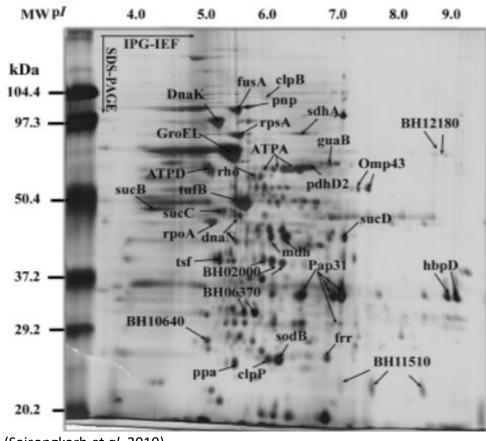
• Takes ~3 weeks

Serology:

- Mainly immunofluorescence assays
- Antigens differ between batches
- Disadvantages to all methods. There is need for a new test.

Aims and objectives of the study

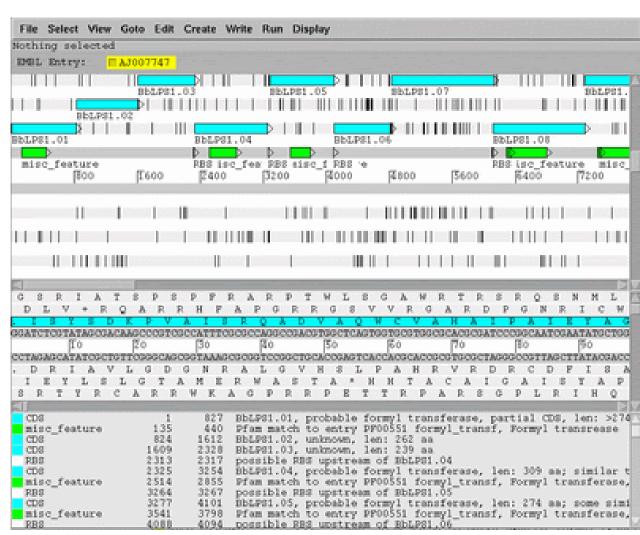

Aim:


• Produce a better diagnostic test for suspected CSD patients based on detecting *B. henselae* antibodies in patient sera.

Objectives:

- Can we create recombinant versions of immunogenic B. henselae proteins?
- Do the recombinant proteins retain immunogenicity?

Previous work, leading to the study

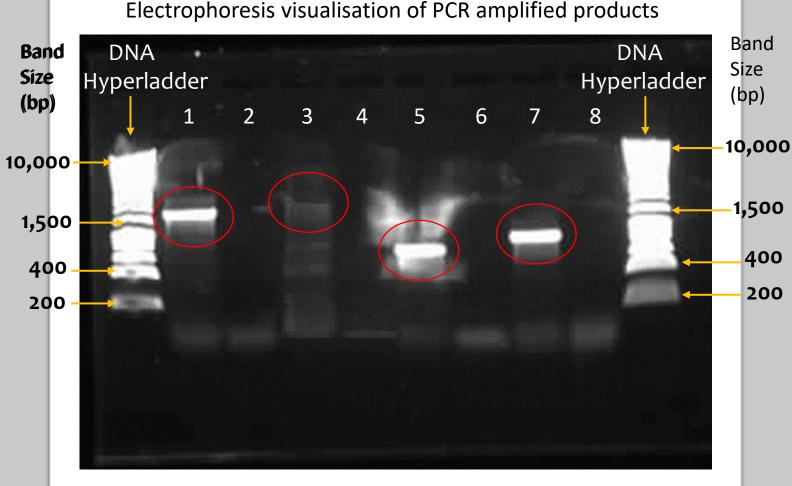

(Saisongkorh et al, 2010)

- Whole proteome analysis of *B. henselae* via SDS-page
- Immunoblotting performed to find immunogenic proteins
- AtpD, GroEL, PPI and P26 identified across both papers as immunogenic

- Identification of relevant genes in *B. henselae* genome sequence
- Designing their primers for PCR in Lab 2

Looked at 4 genes coding for the proteins of interest:

- P26
- AtpD
- PPI
- GroEL

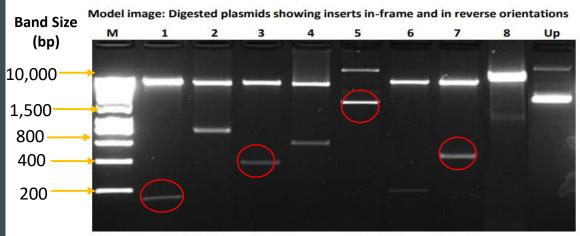


Artemis software used to analysis B. henselae genome

- PCR to amplify ORFs identified in lab 1
- Clone ORFs into TOPO vector
- Transformed into E. coli and verified presence by culturing E.coli onto agar

 Table 1: Expected band sizes of PCR products/Genes

Gene	Expected size (bp)		
atpD	1,596		
groEL	1,644		
p26	738		
ррі	954		



(1) atpD +ve (2) atpD-ve (3) groEL +ve (4) groEL-ve (5) p26 +ve
(6) p26 -ve (7) ppi +ve (8) ppi -ve.

- Verify presence and orientation of the insert of the vector from lab 2
- Must be in forward orientation to allow for protein expression

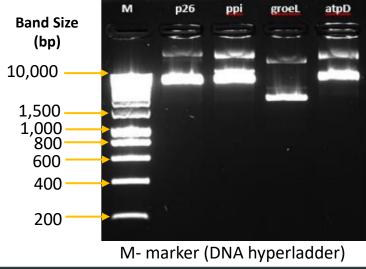
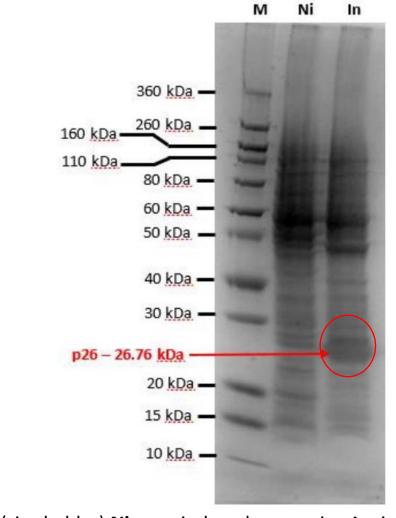
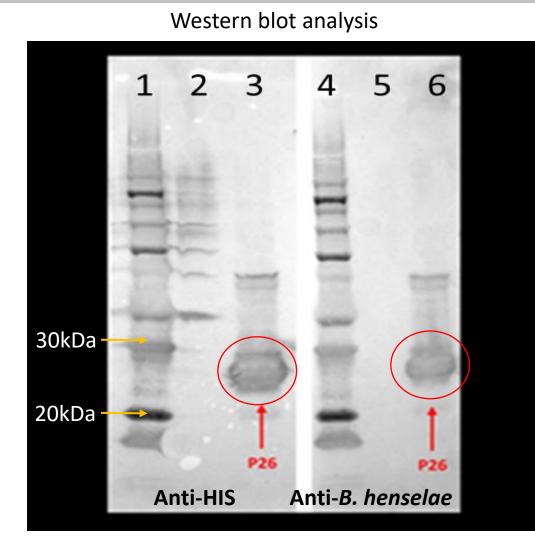

Gene	Expected size of forward orientation (bp)	Expected size of reverse orientation (bp)		
p26	165	765		
ррі	409	607		
groEL	1,627	209		
atpD	460	1,404		

Table 2: Expected band sizes of gene inserts in forward or reverse orientation

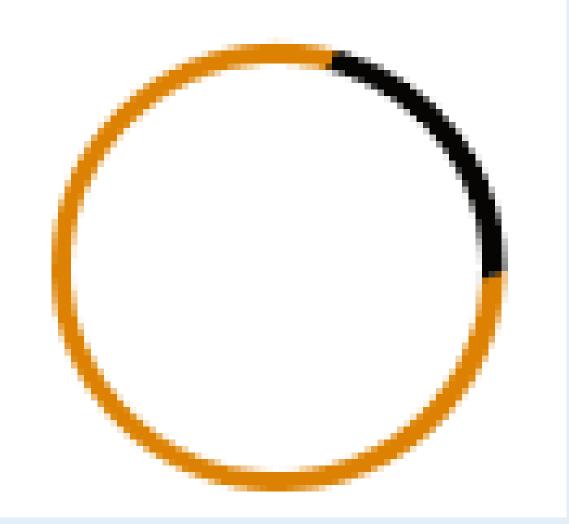

M, marker; 1, *p26* in frame; 2, *p26* in reverse; 3. *ppi*, in frame; 4, *ppi* in reverse; 5. *groEL* in frame; 6, *groEL* in reverse; 7, *atpD* in frame; 8, *atpD* in reverse; Up, undigested plasmid.

Electrophoresis visualisation of plasmids containing PCR products


- Induce expression of recombinant protein P26
- Non-induced control to show SDS-page had worked
- SDS-page to confirm recombinant protein expression

SDS-Page electrophoresis confirmation of recombinant proteins

M- marker (size ladder) **Ni**- non-induced expression **In**- induced protein expression


- Verify the presence of the recombinant proteins through HIS tag detection
- Test their immunogenicity via a western blot

(1&4)- Protein ladders (2&5)- non-induced P26 recombinant expression (3&6)- induced P26 recombinant expression

Findings so far

- P26 recombinant protein retains it immunogenicity and can be used in further experiments for CSD diagnosis
- P26 has the potential to be used as an antigen in a novel serodiagnostic assay for CSD

Follow on study

• Aim: create a serodiagnostic test using recombinant P26 protein

Objectives:

- Test recombinant P26 on more CSD patient sera
- Evaluate recombinant P26's sensitivity and specificity for potential use of an ELISA
- Begin initial steps of ELISA development

Follow on study

Table 3. Sensitivities and specificities of ELISA testing on CSD samples

Antigen	Definite serum sample	Immunoglobulin (Ig)	Se	Sp	Reference
B. henselae					
OMP	CSD with lymphadenitis, cat contact	lgM	48	98.2	Giladi et al. (2001)
		lgG	75	99.5	
		IgM and IgG	85	97.7	
Whole cells	CSD with PCR positive	lgM	45	98	Herremans et al. (2007)
		lgG	32	98	
		IgM and IgG	59	98	
Whole cells	CSD with PCR positive	lgM	65	91	Vermeulen et al. (2007)
		lgG	28	91	
		IgM and IgG	77	82	
Whole cells	B. henselae with PCR positive	lgM	56.3	98.4	Herremans et al. (2009)
		lgG	35.8	97.6	
Recombinant B. hei	nselae protein				
r17-kDa protein	B. henselae IFA titers 1:128 to 1:1024	lgG	71.1	93	Loa et al. (2006)
rGroES	B. henselae IFA titers 1:256	lgG	80	15	McCool et al. (2008)
rRplL		lgG	78	59	
ВерА		lgG	86	44	
GroEL		lgG	80	30	
r17-kDa protein	B. henselae IFA positive	lgM	100	97.1	Hoey et al. (2009)

(Saisongkorh et al, 2010)

Test on more sera samples and evaluate the sensitivity and specificity of recombinant P26 for potential use as an ELISA:

- Gather known CSD serum samples
- Gather known negative CSD samples
- Collect known CSD sera from Hansmann et al who has 29 known CSD serum samples (Hansmann et al, 2005).
- Collect known negative sera samples from 41 lymphoma patients in collaboration with a previous study (Ferrara et al, 2014).

Follow on study

Several papers have conducted similar studies on different recombinant *B. henselae* proteins such as groEL and 17-kDa. (Loa *et al*, 2005) (McCool *et al*, 2008).

ELISA development small initial steps:

- Purify recombinant P26 protein by affinity chromatography on Ni-NTA resin
- Quantify purified protein by bicinchoninic assay (McCool *et al*,2008)
- Test differing protein volumes to put in ELISA wells, ranging from 0.3-10µg/mL (Loa et al, 2005)

References

- Eberhardt, C., Engelmann, S., Kusch, H., Albrecht, D., Hecker, M., Autenrieth, I. and Kempf, V., 2009. Proteomic analysis of the bacterial pathogen *Bartonella henselae* and identification of immunogenic proteins for serodiagnosis. *PROTEOMICS*, 9(7), pp.1967-1981.
- Ferrara, F., Di Niro, R., D'Angelo, S., Busetti, M., Marzari, R., Not, T. and Sblattero, D., 2014. Development of an enzyme-linked immunosorbent assay for *Bartonella henselae* infection detection. *Letters in Applied Microbiology*, 59(3), pp.253-262.
- Hansmann, Y., DeMartino, S., Piemont, Y., Meyer, N., Mariet, P., Heller, R., Christmann, D. and Jaulhac, B., 2005. Diagnosis of Cat Scratch Disease with Detection of *Bartonella henselae* by PCR: a Study of Patients with Lymph Node Enlargement. *Journal of Clinical Microbiology*, 43(8), pp.3800-3806.
- Loa, C., Mordechai, E., Tilton, R. and Adelson, M., 2006. Production of recombinant *Bartonella henselae* 17-kDa protein for antibody-capture enzyme-linked immunosorbent assay. *Diagnostic Microbiology and Infectious Disease*, 55(1), pp.1-7.
- McCool, T., Hoey, J., Montileone, F., Goldenberg, H., Mordechai, E. and Adelson, M., 2008. Discovery and analysis of Bartonella henselae antigens for use in clinical serologic assays. Diagnostic Microbiology and Infectious Disease, 60(1), pp.17-23.
- Saisongkorh, W., Kowalczewska, M., Azza, S., Decloquement, P., Rolain, J. and Raoult, D., 2010. Identification of candidate proteins for the diagnosis of *Bartonella henselae* infections using an immunoproteomic approach. *FEMS Microbiology Letters*, 310(2), pp.158-167.